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The non-linear period, for each of the first four modes, of planar, flexural large amplitude
free vibrations of a slender, inextensible cantilever beam with a flexible root and carrying
a lumped mass at an intermediate position along its span is investigated theoretically. With
shear deformation and rotary inertia assumed to be negligible, but with account taken of
axial inertia and non-linear curvature, two different, simple, approaches—for comparison
purposes—are used to formulate the equation of motion. In the first approach, the
governing partial differential field equation of motion is obtained by using Hamilton’s
principle, following closely the analysis presented in reference [1], which does not take into
account the inextensibility condition. By retaining non-linear terms up to order five and
using the single mode approximation in conjunction with the Rayleigh–Ritz method, the
field equation is reduced to a non-linear, single mode, Duffing type temporal problem. In
the second approach, an assumed single mode Lagrangian method, with account taken of
the inextensibility condition, is used to form directly the fifth order non-linear unimodal
temporal problem. Because of the particular non-linear terms in the temporal problem in
both formulations, the time transformation approach [2] is used to obtain an approximate
solution to the period of oscillation. Results in non-dimensional forms are presented
graphically for the effects of the base stiffness, position and magnitude of lumped mass on
the variation of period of oscillation with amplitude. Comparison of the present models
with some of the existing ones, and comparison of the time transformation results with
those of the harmonic balance, and existing ones are presented.
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1. INTRODUCTION

Many engineering systems can be modelled as slender cantilever beams with a flexible root
and carrying an intermediate lumped mass. Such a beam, being flexible, often undergoes
large amplitude vibrations—as, for example, when subjected to parametric excitation
[3–5]—which are not adequately described using linear vibration theory. It is of interest
in the analysis of a non-linear vibrating system to determine the free vibration
frequency–amplitude dependence, as this allows one to establish the general qualitative
behavior, i.e., the backbone curve, of the steady state forced response. Many theoretical
and experimental investigations into non-linear vibrations of beam elements have appeared
over the years. Reviews on this subject have been presented by, for example, Rosenberg
[6], Nayfeh and Mook [7], Crespo da Silva and Glynn [8] and Eisley [9], among others.
In general, these non-linearities may be classified into geometric, inertial or material [9].
Geometric non-linearities may be caused by axial stretching of the median line in axially
restrained beams or by large beam slopes, so that it is no longer possible to use the small
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angle assumption which reduces the non-linear curvature to the simple linear form [10–14].
Non-linear inertia effects may be caused by the presence of concentrated or distributed
inertia elements, and by non-planar or parametric motions [4, 7, 8, 15]. Material
non-linearities occur whenever the stresses are non-linear functions of the strains. The
non-linearities may also appear in the boundary conditions [16, 17].

Due to the diversity of ways by which non-linearities may enter the equations of motion,
various simplifying assumptions regarding the effects of different kinds of non-linearities
are usually introduced in order to derive approximate, manageable and meaningful
models, depending on the nature of the problem and the objectives of the analysis. For
example, the non-linear free and forced vibrations of a uniform beam with axially
restrained edges to produce mid-plane stretching non-linearity, i.e., extensional beams,
have been studied in references [9–14, 18–29], to mention a few. The studies in reference
[9–13, 18–25] neglected axial inertia, used linear curvature and accounted for large
deformations through the use of Green’s strain measure in the longitudinal direction.
Lewandowski [14] and Sevin [26] included the effect of axial inertia but used linear
curvature, while Eringen [27], McIvor [28] and Atluri [29] included the effects of axial
inertia and non-linear curvature.

The free and forced vibrations of inextensible beams, i.e., beams for which the length
of the neutral axis remains constant during the motion, have been studied in
[1, 3-5, 7, 15, 30–36], among others. Wagner [1] included axial inertia and non-linear
curvature in the analysis of large amplitude, planar flexural free vibrations of an initially
straight uniform beam having free–free or fixed–free end conditions, with neglibible shear
and rotary inertia effects. A combination of Hamilton’s principle and an assumed single
linear mode initial deflection, Buhnov’s method, was used to obtain a unimodal non-linear
temporal problem which was solved by using Atkinson’s superposition procedure. The
variation of the non-linear period with the dimensionless amplitude a (a= b/l, where l is
the beam length and b is the deflection at the free end and at l/2 for the clamped–free and
free–free cases, respectively) was shown only for the first mode and for values of a up to
0·5. These results, which included the effects of polynomial non-linearities up to 13th order,
showed non-linear characteristics of the hardening type; i.e., the period decreases
monotonically with an increasing amplitude of motion. It is to be noted that although in
the analysis in reference [1] the beam was assumed to be inextensible, the inextensibility
condition was not taken into account in the derivation of the non-linear field partial
differential equation of motion. In fact, and as will be shown later, the non-linear terms
in this equation are all of the hardening type due to potential energy stored in bending
and none is of the inertia (softening) type. Thus it is expected that the variation of period
with amplitude obtained using the analysis in reference [1] will exhibit hardening
characteristics for all modes of vibration. The above analysis, however, predicts the correct
behavior for the fundamental period but not for the second and higher modes of an
inextensible beam is due to the fact that for the lower modes the non-linear curvature
effects dominate, while for the higher modes the inertia (softening) effects dominate [7, 15].
Nageswara Rao and Venkateswara Rao [30] accounted for axial inertia and the
inextensibility condition, and used Newton’s moment law and Euler–Bernoulli beam
theory to derive a set of differential field equations for the planar flexural free motion of
a clamped–free or a free–free beam. Assuming the time variation of the beam response
to be simple harmonic, they reduced the field equations of motion to a two-point
non-linear boundary value problem, which they solved using an iterative numerical method
for the period of oscillation and the corresponding non-linear mode shape. They presented
results only for the first and second modes and for amplitude ratio a (a is defined in
reference [1]) up to 0·5 and up to 0·3 for the first and second modes, respectively. For the
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first mode their results were shown to be in good qualitative and quantitative agreement
with those presented in reference [1]; for the second mode their results displayed a softening
type non-linear behavior, while those obtained using the analysis in reference [1] displayed
a hardening behavior. Takahashi [31] used a simplified version of the equations derived
by Yoshimura and Uemura [32] to describe the planar free vibrations of inextensible
free–free and clamped–free beams similar to those in references [1, 30]. In this case,
Galerkin’s method and a two-term harmonic balance (HB) method were used to analyze
the free motions of these beams, with non-linear terms retained up to fifth order. He
presented results of frequency–amplitude variation only for the first mode of each of these
beams, and for an amplitude ratio a (a defined as in references [1, 30]) up to 0·5. These
results showed that the influence of the large amplitude motion on the frequency of the
first mode of each of these beams is similar to that of a weakly softening spring, in
contradiction with those presented in references [1, 30]. The vibrations of inextensible
beams, i.e., beams with inertial non-linearities, have also been studied in [4, 7, 15]. Haight
and King [15] included inertial non-linearities and neglected those due to curvature and
torsion in their study of the stability of in-plane motion of a slender inextensible cantilever
rod with nearly equal principal moments of inertia of the transverse cross-sectional area
and subjected to lateral harmonic base motion. Crespo da Silva and Glynn [8] used the
extended Hamilton’s principle to derive a set of fairly general non-linear partial
integro-differential field equations of motion for an inextensible beam, which include third
order non-linear contributions from inertia, curvature and torsion. A number of simplified
versions of these equations were used by different authors to study the non-linear response
of inextensional beam elements with various end conditions for different cases of base and
other excitations [5, 33–36]. Zavodney and Nayfeh [4] considered axial inertia and the
inextensibility condition and used Newton’s moment law and Euler–Bernoulli beam theory
to derive a non-linear partial integro-differential equation describing the transverse planar
motion of a slender, vertically mounted cantilever beam undergoing harmonic vertical base
motion and carrying a lumped mass and rotary inertia at an intermediate point along its
span. They argued that their equation, which includes non-linear effects arising from
curvature and inertia, can be made, after introducing certain assumptions regarding the
magnitudes of some terms, to agree with a simplified planar version of the general
equations in reference [7]. An objective of the present work, as will be discussed later, is
to use a simple approach, but not as general as the above-mentioned ones, to the
formulation of the large amplitude planar flexural motion of an inextensible beam which
includes the effects of non-linear curvature and inertia.

Closed form solutions for non-linear vibrations of continuous one-dimensional beam
systems are in general not possible. On the whole, two methods have been employed in
obtaining approximate solutions to such non-linear problems. These methods are based
on the assumption that the beam deflection is separable in space and time. In the first
approach, one assumes a solution in the form of series combinations of n specified spatial
co-ordinate admissible functions with n unspecified time dependent coefficients
(generalized co-ordinates). When the assumed admissible spatial functions are the
eigenfunctions of the associated linear beam problem, the procedure is known as
Galerkin’s method, whereby upon using the orthogonality of the beam eigenfunctions the
non-linear partial differential equation of motion is converted into a set of n coupled
non-linear ordinary differential equations in the generalized co-ordinate describing the
temporal behavior of the system. When n=1 the procedure is known as the single mode
approach, and the temporal problem is reduced to a single unimodal, usually Duffing type,
non-linear oscillator. Approximate analytic solutions to the equivalent non-linear temporal
problem are usually obtained using perturbation methods; i.e., the method of multiple
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scales (MMS), [4, 9, 33–36], or HB method [5, 13, 18–23, 28, 31] or the averaged method
[7]. With the exception of the multi-term HB method, the techniques are limited to weakly
non-linear systems; i.e., these techniques lose their usefulness as the amplitude of vibration
becomes relatively large [37, 38].

An obvious limitation of the single mode approach in comparison with the multi-mode
one is that it does not allow for any interaction between the different modes of motion;
i.e., it cannot be used to study internal and combination resonances in planar motions of
beams. Recent experimental and theoretical studies [3, 39] have shown that non-linear
modal interaction can occur in the planar response of a flexible cantilever, i.e.,
parametrically excited, beam even between modes of non-commensurate and widely spaced
natural frequencies. An important aspect of the assumed mode(s) method is the
assumption that the modes of vibration of the non-linear systems remain self-similar
during the motion and are unchanged by the non-linearities; i.e., only the frequencies are
allowed to be altered by the non-linearities. Theoretical and experimental studies indicate,
however, that the vibration modes as well as the frequencies can deviate significantly from
the associated linear problem [16, 24, 40–44]. Therefore, one would expect the assumed
mode(s) method to lose its usefulness as the amplitude of motion becomes large. Despite
its above inherent limitations, the assumed mode(s) method has been used to obtain
meaningful results in the analysis of free and forced non-linear vibrations of a wide class
of continuous systems [1, 4, 7–13, 18–23, 25–29]. This is due to the fact that modal
subspaces are invariant and can capture solutions of the beam full partial non-linear
differential equation of motion [45].

The second approach commonly used to analyze the non-linear vibrations of continuous
beams assumes the time variation to be simple harmonic of unknown frequency, and then
application of the harmonic balance method leads to a non-linear boundary value problem
defining, approximately, the non-linear mode shapes and frequency [16, 24, 30]. Although
this approach accounts for the variation of mode shape(s) with frequency, it suffers from
the drawback that the consideration of the effects of higher harmonics on the frequency
of a given mode is in general mathematically prohibitive, and from the fact that a
non-linear boundary value problem is in general more difficult to treat analytically than
the associated non-linear initial value problem. It is to be noted that direct application of
perturbation and HB methods to non-linear partial differential equations and boundary
conditions and the invariant manifold approach have recently been used in the vibration
analysis of non-linear continuous systems [40–42].

In the present work, the non-linear, large amplitude free vibrations of a slender,
inextensible cantilever beam with a rotationally flexible root and carrying a lumped mass
at an intermediate position along its span are considered. The shear deformation and
rotary inertia effects are assumed to be negligible, and the beam is assumed to be
undergoing planar flexural vibrations. By Taking into account axial inertia and non-linear
curvature, two different, simple, approaches—for comparison purposes—are used to
formulate the equation of motion. In the first approach, the governing partial differential
field equation of motion is obtained using Hamilton’s principle, following closely the
analysis presented in reference [1], which does not account for the inextensibility condition.
Retaining non-linear terms up to fifth order and using the single mode approximation in
conjunction with the Rayleigh–Ritz method, the field equation is reduced to a non-linear,
unimodal, Duffing type temporal problem. This will be referred to as formulation I. In
the second approach, an assumed single mode Lagrangian method, taking into account
the inextensibility condition, is used to directly form the fifth order non-linear unimodal
temporal problem. This will be referred to as formulation II. Because of the particular
non-linear terms in the temporal problem in both formulations, the time transformation
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approach [2] is used to obtain an approximate solution to the period of oscillation. In
addition to its generality and relative simplicity, the time transformation method offers the
advantage over other approximate analytic methods in its applicability to strongly
non-linear oscillators [2]; that is, it imposes no restrictions on the magnitudes of the
non-linearities, so that relatively larger amplitudes of vibration than previously considered
by other authors can be treated more accurately, especially for the higher modes where
the linear and non-linear terms become of comparable magnitude at relatively low
amplitude values. Results, in non-dimensional form, for each of the first four modes, are
presented graphically for the effects of the base stiffness and the position and magnitude
of the intermediate lumped mass on the variation of period of oscillation with amplitude.
Comparison of the present models with some of the existing ones, and comparison of the
time transformation results with those of the harmonic balance, and existing ones are
presented. Hamdan and Jubran [46], Hamdan and Latif [47] and others (see, e.g.,
references [48, 49]), have shown that the natural frequencies of relevant linear problems
may be considerably lower when the roots are flexible and when the beam carries a lumped
mass. Studies of relevant non-linear problems, however, are less abundant.

2. ASSUMPTIONS AND EQUATION OF MOTION

2.1.    

A schematic of the beam under study is shown in Figure 1. The beam is considered to
be uniform of constant length l and mass m per unit length, hinged at the base to a
rotational spring of stiffness Kr , and carries a lumped mass M at an arbitrary intermediate
point s= d along the beam span. The thickness of the beam is assumed to be small
compared with the beam length, so that the effects of rotary inertia and shearing
deformation can be ignored. Provided that the lumped mass M is placed symmetrically
with respect to the beam length and the beam is relatively short, e.g., the ratio of the beam
length to width is Q30, the beam transverse motion can be considered to be purely planar
[4]. It is further assumed that the amplitude of vibration may reach any large value, but
remains below the limiting value for which the slope u of the elastica =u==90°; also the
beam is assumed to be conservative. These assumptions are the same as those used by
Wagner [1] in studying the planar non-linear free vibration of a cantilever beam which was
similar to the present one but with Kr =a and M=0. In this section, the governing
equation of motion is formulated via Hamilton’s principle, following closely the analysis
in reference [1]. The result of this approach, referred to here as formulation I, is shown

Figure 1. A sketch of the beam system under study.
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to lead to incorrect prediction of the period–amplitude variation for the second and higher
modes of the inextensible beam. In section 3 an alternative formulation, referred to as
formulation II, which takes into account the inextensibility of the beam is derived by using
a Rayleigh–Ritz–Lagrangian approach.

2.2.   :  

In terms of the co-ordinate system shown in Figure 1, the kinetic energy KE of the
beam is

KE=(ml/2) g
1

0

[1+ md(j− h)](ẋ2 + ẏ2) dj, (1)

where j= s/l is a dimensionless arc length, h= d/l is the dimensionless relative position
of the lumped mass M, d(j− h) is Dirac’s function, m=M/ml is a dimensionless mass
ratio parameter and a dot denotes a derivative with respect to time t. The potential energy
V, due to bending, is given as

V=(EIl/2) g
1

0

R2(j, t) dj, (2)

where EI is the modulus of flexural rigidity and R(j, t) is the radius of curvature of the
neutral axis of the beam. In the present work the exact expression for the radius of
curvature R will be used which, in terms of the variables x and y, takes the form [1]

R= l3(x'y0− x0y'), (3)

where l=1/l and a prime denotes differentiation with respect to the dimensionless arc
length j. Note that the potential energy expression in equation (2) does not include the
potential energy stored in the rotational spring Kr at the base of the beam. The effect of
this spring will, however, be taken into consideration in selecting the mode shape function,
carried out in the next subsection, as this procedure was shown, in references [46, 47, 50],
to lead to fairly good accuracy in the analysis of relevant linear vibration problems.
Substituting for equations (1), (2) and (3) into the Lagrangian function L,

L=KE−V=(ml/2) g
1

0

{[1+ md(j− h)](ẋ2 + ẏ2)− (EIl6/m)(x'y0− x0y')2} dj (4)

and, applying Hamilton’s principle,

d g
t2

t1

L dt=0 (5)

leads to the variational problem

g
t2

t1
g

1

0

F(j, t, x, y, ẋ, ẏ, . . . , x0, y0) dj dt=min. (6)
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From the calculus of variations, the minimization of equation (6) is equivalent to satisfying
the Euler–Lagrange equations

1F
1x

−
1

1t
1F
1ẋ

−
1

1j

1F
1x'

+
12

1j2

1F
1x0+

12

1j 1t
1F
1ẋ'

=0, (7)

1F
1y

−
1

1t
1F
1ẏ

−
1

1j

1F
1y'

+
12

1j2

1F
1y0+

12

1j 1t
1F
1ẏ'

=0. (8)

In addition to equations (7) and (8), the variables x and y are related by the subsidiary
relation

x'2 + y'2 = l 2. (9)

Upon carrying out the necessary differentiations in equation (8) and using equation (9)
and its derivatives to eliminate the variable x, one obtains the following non-linear partial
differential equation for the transverse vibration of the beam:

[1+ md(j− h)]ÿ+ b2y2= b2l2(1− l2y'2)−2[2y'y0y1+ y03 + l2( y'2y03 −2y'3y0y1)], (10)

where b2 =EI/ml4. It is pointed out that an independent equation for x similar to equation
(10) can be derived by using equations (7) and (9). It is also noted that for m=0 equation
(10) becomes identical to that in reference [1]. The highly non-linear equation (10) may
be simplified by noting that =l=Q 1. Thus, expanding the term (1− l2y'2)−2 into a power
series and retaining non-linear terms up to an order of five, one obtains, after some
algebraic manipulations,

[1+ md(j− h)]ÿ+ b2y2= b2l2(2y'y0y1+ y03)+ b2l4(2y'3y0y1+3y03y'2). (11)

In order to compare equation (11) with that obtained by Takahashi [31], one sets m=0,
changes the differentiation with respect to j to a differentiation with respect to s, and
obtains

ÿ=(EI/m)y2=−(EI/m)[2y'y0y1+ y03 +2y'3y0y1+3y03y'2], (12)

which is the same equation as that obtained in reference [31] except that the non-linear
(bracketed) term in equation (12) is the negative of that obtained in reference [31].
Consequently, as will be shown in the next two subsections and as was shown in reference
[1], the model in equation (11), or equation (12), predicts that the first mode of a
clamped–free, or free–free [1], beam has a period–amplitude characteristic of the hardening
type, contrary to the softening type predicted in reference [31]. The difference between the
two predictions is due to the difference in the sign, rather than in the nature, of the
non-linearities in these two models. Note that the non-linear terms in equation (11) are
all the static, hardening type due to potential energy stored in bending, and none is of the
inertia (softening) type. Thus, as will be shown in the next subsection, for a clamped–free
beam, equation (11) yields period–amplitude characteristics of the hardening type
regardless of the mode number. It is to be noted that, although the beam in equation (11)
was assumed to be inextensible, the derivation of this equation, which took into account
the axial inertia and non-linear curvature, however, did not account for the inextensibility
condition. On the other hand, the simplified version, used in reference [5], of the equations
derived by Crespo da Silva and Glynn [8] and that derived by Zavodney and Nayfeh [4]
(see e.g., references [5, 9] for details), which account for the inextensibility of the beam,
include non-linear inertia softening terms in addition to the static hardening terms. The
inextensibility condition, which induced a force tangent to the neutral axis of the beam
[33], will be included in formulation II in section 3. For comparison purposes, however,
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in the next section examples are presented of the period–amplitude variation for the first
few modes of the cantilever beam in Figure 1, obtained by using the model in
equation (11).

2.3.  -  

The governing non-linear partial differential equation (11) does not admit a closed form
solution. However, this equation may be reduced to an ordinary differential equation in
time by applying any of the variational methods, such as the Galerkin or the Rayleigh–
Ritz method. Accordingly, an approximate unimodal solution is assumed to be of the
form

y(j, t)=f(j)u(t), (13)

where u(t) is an unknown function of time and f(j) is a normalized eigenfunction of the
associated linear problem. In this work, the Rayleigh–Ritz method which, unlike the
Galerkin method, does require that f(j) of the true eigenfunction of the linear problem,
is used for reasons of simplicity and computational effort, but at the expense of reduced
accuracy, which is small for a small attached mass to beam mass ratio m, as will be
illustrated later in this section. In this case, f(j) is taken to be the eigenfunction of the
linear base beam corresponding to the beam under consideration (the same, assumed
linear, beam as in Figure 1, but without the attached lumped mass), governed by

ÿ+ b2y2=0, (14)

subject to the boundary conditions

y(0, t)= y0(1, t)= y1(1, t)=0, EIy0(0, t)=Krly'(0, t), (15)

with the restriction hQ 1: that is, the lumped mass M cannot be placed at the tip of the
beam. Note that the boundary conditions in equation (15) are formulated in terms of the
dimensionless arc length j. The first three of these boundary conditions are the same as
those formulated in terms of the variable x in the classical linear beam theory [1]. The
fourth boundary condition, however, may be assumed to be the same as that formulated
in terms of x in the linear theory, provided that the rotation at the clamped end of the
beam is small. Also note that the linear problem given by equation (14) does not take into
account the presence of the lumped mass M. Thus the eigenfunctions f(j) obtained for
this problem are not the true linear ones. The true eigenfunctions, which take complicated
forms, however, can be obtained by solving the linear problem [47, 48]

[1+ md(j− h)]ÿ+ b2y2=0, (16)

subject to the boundary conditions in equation (15). The solution of equation (16), by
using the Laplace transform method, has been obtained by Liu and Huang [48], and
for the sake of simplicity will not be used in the present work. This is also justified
by the fact that, for small m, the eigenfunction of each of the first few modes of the base
beam in equation (14) closely resembles that of beam with attached mass in
equation (16) [47].

Using the standard method of separation of variables to solve equation (14), one obtains
the transcendental frequency equation [46, 49]

(S/p)[1+cos p cosh p]+ cos p sinh p−sin p cosh p=0 (17)
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and the eigenfunctions

f(j)= (1/r)[sin pj−A sinh pj−B(cos pj−cosh pj)], (18)

where r=f(1) is a scaling factor chosen so that =f(j)=max =1, S=Krl/EI is a dimensionless
stiffness parameter, p4 =mv2l4/EI is a dimensionless frequency parameter, v is the natural
frequency of the base beam, and A and B are weighting constants associated with each
mode, defined as

A=
(S/2p)[cos p+cosh p]− sin p
(S/2p)[cos p+cosh p]+ sinh p

, B=
sin p+A sinh p
cos p+cosh p

. (19, 20)

Note that as S:a and A:1, the beam becomes rigidly clamped, and equations (17) and
(18) reduce to those that one obtains for a rigidly clamped–free beam [46, 50]. Equations
(17)–(20) will be solved numerically, as explained later in this section, to obtain f(j) and
p of each of the first four modes for given S. Note that in the present formulation the
attached mass M is treated as an applied inertial load which is accounted for in the
equation of motion, and thus is allowed to affect the frequency but not the mode shape
of the linear problem. In order to see the effect of the present procedure on the linear
frequency, one substitutes equation (13), with f(j) as given by equation (18), into equation
(16), multiplies equation (16) by the same f(j), integrates the results with respect to j from
0 to 1 and applies the boundary conditions in equation (15). Then, upon assuming simple
harmonic motion with frequency v, one obtains the dimensionless linear frequency
parameter V=v/b=(a2/a1)1/2, where a1 and a2 are given by equation (22). In Table 1 is
shown a comparison of the dimensionless linear frequency parameters V1/2 of equation (16)
calculated in this way, i.e., by using the present Rayleigh–Ritz method and a numerical
procedure explained later on, and that obtained in reference [48] by solving equation (16)
by using the Laplace transform method for selected values of S, m and h. As can be seen
from these results, the present procedure, in addition to its simplicity, yields reasonably
accurate results for the first few modes even when the attached mass to beam mass ratio
m is not too small.

T 1

The linear frequency parameter V1/2 = (2p/v0)1/2, for the beam shown in Figure 1

S m h Mode Present equation (32) Reference [48]

0·10 0·5 0·5 1 0·67990 0·679870
0·10 0·5 0·5 2 3·45429 3·551608
0·10 0·5 0·5 3 6·86493 6·957619
0·10 0·5 0·5 4 8·74384 9·363541
0·10 2·0 0·5 1 0·58595 0·585824
0·10 2·0 0·5 2 2·82837 3·266057
0·10 2·0 0·5 3 6·37858 6·885321
0·10 2·0 0·5 4 7·03278 9·040730
a 0·5 0·5 1 1·78033 1·778434
a 0·5 0·5 2 3·93810 4·032716
a 0·5 0·5 3 7·85324 7·853989
a 0·5 0·5 4 9·24614 9·981989
a 0·5 0·3 1 1·85804 1·857729
a 0·5 0·3 2 4·20450 4·174915
a 0·5 0·3 3 6·49137 6·877625
a 0·5 0·3 4 10·15139 10·668627
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Substituting equation (13) into equation (11), multiplying by f(j), integrating with
respect to j from 0 to 1, and using the boundary conditions in equation (15), one obtains
the unimodal Duffing type temporal problem [1],

a1ü+ b2(a2u+ a3l
2u3 + a4l

4u5)=0, (21)

where

a1 =g
1

0

f2 dj+ mf2(h), a2 =g
1

0

ff2 dj= p4 g
1

0

f2 dj,

a3 =g
1

0

f'2f02 dj, a4 =g
1

0

f'4f02 dj. (22)

Note that the integrals in equations (22) can be evaluated analytically; however, the
evaluation involves laborious mathematical operations. Therefore, these integrals were
evaluated numerically by using Simpson’s rule, in which an integration step size of
Dj=0·001 was found to yield good accuracy. A bisection method was used to evaluate
the first four roots pi , to 10−7 accuracy, of equation (17) for various values of stiffness
parameter S. The following are the results of samples of these calculations. For the case
S=1000, m=0·5, h=0·5: p1 =1·873233, A=0·9949165, B=1·3568937, a1 =0·3080842,
a2 =3·081346, a3 =1·2574844, a4 =1·1076840; p4 =10·9846758, A=0·9785036,
B=0·9784702, a1 =0·5008872, a2 =3647·586, a3 =60077·86, a4 =2377061·3. For the case
S=10, m=0·4, h=0·8: p1 =1·7227415, A=0·6528884, B=1·0074396, a1 =0·4918255,
a2 =2·3736932, a3 =0·8338772, a4 =0·6435092; p4 =10·5217848, A=0·3221550,
B=0·3221150, a1 =0·4104304; a2 =3121·8115, a3 =47551·04, a4 =1762706·4. These
results, and others not shown, indicate that the coefficients ai in equation (21) are positive
regardless of the mode number of values of S, m and h. This fact is also evident from
equation (22), since each ai is given as the integral of even powered, or products of even
powered, functions. Thus, the non-linearities in equation (21) for given S, m and h are of
the hardening type regardless of the mode number considered. Nonetheless, for
comparison purposes, some selected examples of period–amplitude variations for various
modes obtained by using a dimensionless version of equation (21), derived in this section,
will be presented in the next subsection.

Note that the numerical values of the coefficients a3 and a4 of the non-linear terms in
equation (21), in general, increase sharply and attain large values as the mode number for
a given beam is increased. For convenience, equation (21) is converted to the dimensionless
form

q̈+ q+ o1q3 + o2q5 =0, (23)

where

o1 = a3/(p2a2), o2 = a4/(p4a2). (24)

In equation (23), dots denote derivatives with respect to the new dimensionless time
t*= (a2/a1)1/2[EI/(ml4)]1/2t, and q= pu/l is a dimensionless beam displacement. Note that
in the above scaling procedure, which is similar to that used in reference [5], no prior
assumption is made regarding the relative order of magnitude of various terms in equation
(21). In particular, the arbitrary use of the dimensionless frequency parameter p in the
definition of the displacement scaling factor is done for numerical convenience, so that the
coefficients o1 and o2 in equation (23) would not attain large values for the higher modes;
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i.e., this does not change the relative order of magnitude of various terms in the original
equation of motion. The following are examples of the results calculated by using equation
(24). For the case S=1000, m=0·5, h=0·5: o1 =0·1162996, o2 =0·0291950 for p= p1,
and o1 =0·1365006, o2 =0·0447596 for p= p4; for the case S=10, m=0·4, h=0·8:
o1 =0·1183688, o2 =0·0307786 for p= p1, and o1 =0·1375861, o2 =0·0460697, for p= p4.
The analytical solution of equation (23) is carried out in the next section.

2.4.    

The sample calculations of the parameters ai in equation (21) and oi in equation (23),
presented in the previous section, and examination of the various terms in these equations
indicates that, for the range of amplitudes to be considered in this work (u/l up to 0·7 for
the first mode and up to 0·5 for the second and higher modes, q= pu/l), the non-linear
oscillator described by either of these equations is in general strongly non-linear, especially
for the second and higher modes. Therefore, an approximate analytic solution for this
oscillator given by using perturbation methods will not be adequate for large amplitudes
of the vibrations, as these methods are restricted to the solution of weakly non-linear
oscillators: e.g., when the amplitude of vibration is restricted to values for which the
non-linear terms in equation (23) remain small, (in this case less than unity), compared
to the linear ones. In the present work an approximate solution of equation (23) is obtained
by using the time transformation method described in detail in reference [2]. This technique
differs from other approximate analytic methods in that the oscillation period t may
be obtained to any desired degree of accuracy for the strongly non-linear case with
relatively less computational effort. According to this method, a single valued
transformation T(t*) is sought between the time t* and a new time T, such that in the
new time domain T the solution of equation (23) is simple harmonic with period equal
to 2p: i.e., q(T )= c cos (T ), where T(0)=0 and c is the amplitude of vibration. Writing
equation (23) with T as the independent variable and substituting for q(T )= c cos (T ) in
the result, one obtains [2]:

(1− f 2 ) cos T− ff ' sin T+ o1c2(cos T )3 + o2c4(cos T )5 =0, (25)

where primes denote differentiation with respect to T and f=dT/dt*. Upon using
the trigonometric identities cos3 T= 1

4(3 cos T+ 1
4 cos 3T) and cos5 T= 1

16(10 cos T +
5 cos 3T+cos 5T), equation (25) becomes

(1− f 2) cos T− ff ' sin T+(3
4o1c2 + 5

8o2c4) cos T+0o1c2

4
+ 5

16o2c41 cos 3T+
o2c4

16
cos 5T=0.

(26)

A periodic solution of period 2p may be obtained for f(T) by substituting the series [2]

f2(T)= s
a

n=0,2

Gn cos (nT) (27)

into equation (26) and equating the coefficients of sin (nT ) and cos (nT ) to zero: i.e., by
using the HB method. Taking the square root of the result, using the relation f=dT/dt*,
integrating from 0 to 2p in T and noting that the period t in T is 2p, one obtains

t=(1+ 3
4o1c2 + 5

8o2c4)−1/2 g
2p

0

[1+H2 cos 2T+H4 cos 4T ]−1/2 dT, (28)
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where

H2 =
o1c2/4+ o2c4/3

1+ 3
4o1c2 + 5

8o2c4, H4 =
o2c4/24

1+ 3
4o1c2 + 5

8o2c4. (29, 30)

Note that H2 Q 1/3 and H4 Q 8/15 for all o1c2 and o2c4, so that H2 cos 2T+H4 cos 4TQ 1
for all T. Thus the bracketed radical in equation (28) may be expanded in a convergent
power series and then integrated term by term. This leads to the period n, in the
dimensionless time tb [2],

n=2p(a1/a2)1/2(1+ 3
4o1c2 + 5

8o2c4)−1/2[1+ 3
16(H

2
2 +H 2

4)− 15
64(H

2
2H4)

+ 105
1024(H

4
2 +4H 2

2H 2
4 +H 4

4)+ · · ·]. (31)

Note that the leading term in equation (31) represents the effect of the fundamental
harmonic of the non-linearities, and is the result that one obtains by using the single term
harmonic balance method or the classical perturbation methods, while the bracketed
(correction) term represents a measure of the importance of the higher harmonics. Since
H2 and H4 are less than unity for all o1c2 and o2c4, the series (bracketed term) in equation
(31) is a rapidly convergent one, and only the leading terms in this series are needed to
obtain an accurate approximation for the period. The linear period parameter of the
beam n0 may be obtained by setting all of the non-linear terms in equation (31) to zero;
that is,

n0 =2p(a1/a2)1/2. (32)

2.5.    

With the aid of equations (17)–(20) and equation (22), the parameters o1 and o2 in
equation (24) have been evaluated for various values of S, m and h. In each case the first
four roots of equation (17) were found by using a bisection algorithm. All of the numerical
computations were programmed in double precision on the VAX/VMS version 5 digital
computer. Equations (29), (30) and (31) were then used to calculate the dimensionless
period n for each selected value of the dimensionless displacement a (a= c/p= b/l; see
Figure 1), in the range 0 to 0·7. Examples of the results of these calculations showing the
typical general period–amplitude behavior obtained for each of the first four modes for
various values of S, m and h are displayed in Figures 2–4. As expected, because the
non-linearities in equation (23) are all of the hardening type, as was shown in section 2.3,
these results, and others shown in reference [51] for the first mode, as well as others not
shown, indicate that the period–amplitude characteristics for each of the first four modes
of the present beam model in equation (11) are of the hardening type regardless of the

Figure 2. The non-linear period of first mode versus the non-dimensional amplitude for the case m=0·0,
S=107. ----, Formulation I, equation (31); W, reference [1]; r, reference [30].
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Figure 3. The non-linear period of the second mode versus the non-dimensional amplitude, given by
formulation I, equation (31), for the case m=0·5. –· ·–, S=107, m=0·0; ----, S=107, m=0·5; ––, S=1·0,
m=0·5.

values of S, m and h. In Figure 2 it is shown that for the first mode the TT results are
in good agreement with those in reference [1], and are also in good agreement with those
in reference [30] which include non-linear inertia terms. These results also indicate that the
TT method is a viable technique for the solution of the non-linear conservative oscillator
in equation (23). The reason why the present beam model in equation (11), which does
not include non-linear inertia terms, predicts the correct qualitative as well as quantitative
behavior for the first mode, and fails to predict the correct qualitative behavior of the
second and higher modes of an inextensible beam, is due to the fact that—as will be shown
in the next section—for such beams the curvature (hardening) non-linearities dominate in
the lower modes, while inertia non–linearities dominate in the higher modes [8, 15]. The
absence of inertia non-linearities in equation (11) may be explained by the fact that the

Figure 4. The non-linear period versus the dimensionless amplitude given by formulation I, equation (31) for
the case S=107, m=0·5, m=0·5, –··–··–, third mode; ----, fourth mode.
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derivation of this equation did not take into account the inextensibility of the beam. A
derivation of the equation of motion for the beam in Figure 1 which takes into account
the condition of inextensibility of the beam is presented in the next section.

3. EQUATION OF MOTION: FORMULATION II

The beam in Figure 1 is again assumed to have the same geometric and material
properties and undergoes large amplitude planar flexural free vibrations as described in
section 2.1. Thus, the Lagrangian of this beam, which takes into account the axial
inertia and non-linear curvature, is again given by equation (4). Using the subsidiary
equation (9) and its derivatives to eliminate x' and x0, assuming that (ly)2�1, one
finds that the beam Lagrangian in equation (4), with non-linear curvature terms
retained up to fifth order, becomes

L=(ml/2) g
1

0

{[1+ md(j− h)](ẋ2 + ẏ2)− (EIl4/2m)[y02 + (ly'y0)2 + l4y'4y02]} dj. (33)

Here, as in section 2, primes denote derivatives with respect to the dimensionless arc
length j= s/l, and dots derivatives with respect to real time t. Assuming the beam to
be inextensional implies that the length of the neutral axis of the beam remains constant.
This leads to the constraint relation [8]

(1+ lx')2 + (ly')2 =1. (34)

Equation (34) may be rewritten as

1+ lx'= [1− (ly')2]1/2. (35)

Upon assuming (ly')2�1, expanding the right side of equation (35) in a power series and
retaining terms up to fifth order, equation (35), when integrated from 0 to an arbitrary
value of j, yields

x=−
1
2 g

j

0

(ly'2 + 1
4l

3y'4) dx. (36)

Differentiating equation (36) with respect to time t, one obtains

ẋ=−
1
2 $g

j

0

(ly'2 + 1
4l

3y'4) dx

.

%. (37)

Substituting equation (37) into equation (33), one obtains the one-dimensional beam
Lagrangian

L=(ml/2) g
1

0

[1+ md(j− h)]6ẏ2 + 1
4 $0g

j

0

ly'2 + 1
4l

3y'41 dx

.

%
2

7 dj

−(EIl3/2) g
1

0

[ y02 + (ly'y0)2 + l4y02y'4] dj (38)

It is to be noted that, if one wishes, one may apply the Euler–Lagrange equations (8),
after integrating some of the terms in equation (38) and application of boundary
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conditions, to obtain an integro-differential field equation of motion of the beam and
the corresponding boundary conditions. Since the interest here, however, is to obtain
an equivalent single mode temporal problem, one can avoid the step of derivation of the
integro-differential equation of motion and instead apply the assumed single linear mode
Rayleigh–Ritz procedure, as in section 2.3. Accordingly, substituting a solution of the form
of equation (13) into equation (38), one obtains the beam discrete Lagrangian, after
carrying out some algebraic manipulations,

L=(ml/2){a1u̇2 + a3l
2u2u̇2 + a4l

2u2u̇2 + a5l
4u4u̇2

+ a6l
4u4u̇2 − (EIl4/m)(a2u2 + a7l

2u4 + a8l
4u6)}, (39)

where

a1 =g
1

0

f2 dj+ mf2(h), a2 =g
1

0

f02 dj,

a3 =g
1

0 0g
j

0

f'2 dx1
2

dj, a4 = m$0g
j

0

f'2 dx1
2

%j= h

,

(40)

a5 =g
1

0 $0g
j

0

f'2 dx10g
j

0

f'4 dx1% dj, a6 = m$0g
j

0

f'2 dx10g
j

0

f'4 dx1%j= h

,

a7 =g
1

0

f'2f02 dj, a8 =g
1

0

f02f'4 dj.

Here, as in section 2.3, the assumed mode shape functions f, given by equations (18)–(20),
are those of the base beam described by equations (14) and (15) (see Figure 5). Upon
application of the Euler–Lagrange equation,

d
dt 01L

1u̇1− 1L/1u=0 (41)

and following a scaling procedure similar to that used in section 2.4, one obtains the
dimensionless unimodal temporal problem

q̈+ q+ o1q2q̈+ o1qq̇2 + o2q4q̈+2o2q3q̇2 + o3q3 + o4q5 =0, (42)

where

o1 = a3a4/(p4a1), o2 = a5a6/(p4a1), o3 =2a7/a2, o4 =2a8/a2. (43)

Here, dots are derivatives with respect to the dimensionless time t*= (EIl4/m)1/2(a2/a1)1/2t
and q= pu/l is, as in section 2.3, a dimensionless deflection at the beam tip. In equation
(42) the first four non-linear terms are the result of kinetic energy of axial motion. The
first and third of these non-linear terms are of the softening inertia type, while the second
and fourth terms are of the hardening inertia type. These terms, which are absent in
formulation I (see equation (23)), arise as a result of using the inextensibility condition,
equation (37), in the present formulation II. The last two non-linear terms in equation (42),
which are the same as those in equation (23), are static hardening non-linearities due to
potential energy stored in bending. A numerical procedure, similar to that described in
section 2.3, in conjunction with a symbolic manipulator program, was used to evaluate
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Figure 5. The assumed mode shapes of the vibrating beam system, from equations (18)–(20). (a) S=107; (b)
S=10; (c) S=0·5. ----, f1; –––, f2; -----, f3; · · ·, f4.

the parameters oi in equation (42) by using equations (40) and (43) and equations (17)–(20),
for various values of base stiffness S, mass ratio m and position h of the intermediate mass
M. Examples of the results of these calculations for some selected values of S, m and h

are shown in Table 2. These results, and others not shown, indicate that the non-linear
inertia terms are dominant in the higher modes (i.e., o1 q o3 and o2 q o4), while the

T 2

Values of dimensionless parameters oi in equation (42) for various values of S, m and h (p
is the frequency parameter)

S m h Mode p o1 o2 o3 o4

107 0·00 0·00 1 1·875104 0·326845 0·129579 0·232598 0·087584
107 0·00 0·00 2 4·694091 1·642033 0·913055 0·313561 0·204297
107 0·00 0·00 3 7·854757 4·051486 1·665232 0·281418 0·149677
107 0·00 0·00 4 10·99554 8·205578 3·145368 0·272313 0·133708
107 0·50 0·50 1 1·875104 0·303844 0·115076 0·232598 0·087584
107 0·50 0·50 2 4·694091 0·893981 0·467399 0·313561 0·204297
107 0·50 0·50 3 7·854757 5·074636 1·971962 0·281418 0·149677
107 0·50 0·50 4 10·99554 5·371626 1·995820 0·272313 0·133708
10·0 0·20 0·60 1 1·722741 0·333861 0·131914 0·333105 0·129923
10·0 0·20 0·60 2 4·399523 1·512930 0·802700 0·379417 0·250283
10·0 0·20 0·60 3 7·451057 4·278991 1·715424 0·318201 0·173313
10·0 0·20 0·60 4 10·52178 10·015007 3·820495 0·297109 0·149231
10·0 0·40 0·60 1 1·722741 0·327231 0·127022 0·333105 0·129923
10·0 0·40 0·60 2 4·399523 1·356964 0·696043 0� ·379417 0·250283
10·0 0·40 0·60 3 7·451057 4·233389 1·657464 0·318201 0·173313
10·0 0·40 0·60 4 10·52178 11·178563 4·200250 0·297109 0·149231
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non-linear static terms are dominant in the lower modes. These results also indicate that
for the range of amplitude to be considered in this work, i.e., when u= q/p is of order
l, the non-linear oscillator in equation (42) is strongly non-linear. The TT procedure [2],
with the same procedural steps as summarized in section 2.4 is, therefore, again chosen
to obtain an approximate analytic solution for the period of the non-linear oscillator in
equation (42). Accordingly, upon transforming equation (42) to a new time domain T,
defining f=dT/dt*, letting a periodic solution in T be q= c cos T, and assuming a series
solution for f2 in the form of equation (27), i.e.,

f 2 = s
a

n=0,2

Gn cos nT, (44)

equation (42) becomes, after using trigonometric identities to simplify some of the
trigonometric terms,

01− s
a

n=0,2

Gn cos nT1 cos T+
1
20 s

a

n=2,4

nGn sin nT1 sin T

−2o1c2 cos3 T 0 s
a

n=0,2

Gn cos nT1+
1
2

o1c2 cos2 T sin T 0 s
a

n=0,2

nGn sin nT1
+ o1c2 cos T 0 s

a

n=0,2

Gn cos nT1−3o2c4 cos5 T 0 s
a

n=0,2

Gn cos nt1
+ 1

2 o2c4 cos4 T sin T 0 s
a

n=2,4

nGn sin nt1+2o2c4 cos3 T 0 s
a

n=0,2

Gn cos nT1
+ o3c2 cos3 T+ o4c4 cos5 T=0. (45)

Note that, in section 2.3, closed form solutions for all of the coefficients Gn for the oscillator
in equation (23) were obtained from those given in reference [2] for a generalized, all static
non-linearities, version of equation (23). For the present oscillator in equation (42), which
has inertial as well as static non-linearities, finding closed form solutions for all of the Gn

in equation (45), which are not available in reference [2], appears to be a difficult task which
requires special attention. Therefore, in the present work, for the sake of simplicity,
approximate closed form solutions for the coefficients Gn in equation (45) are sought be
assuming Gn =0 for nq 4. Consequently, upon application of the HB method, i.e., by
equating the coefficient of each harmonic in equation (45) to zero, with n=4, leads to
the following set of the independent, simultaneous linear algebraic equations for the
coefficients G0, G2 and G4:

(1+ 1
2o1c2 + 3

8o2c4)G0 + 1
4(o1c2 + o2c4)G2 + ( 1

16o2c4)G4 =1+ 3
4o3c2 + 5

8o4c4, (46)

(1
2o1c2 + 7

16o2c4)G0 + (1+ 3
8o1c2 + 5

16o2c4)G2 + (−1/2+ 1
16o2c4)G4 = 1

4o3c2 + 5
16o4c4, (47)

( 3
16o2c4)G0 + (3

8o1c2 + 5
16o2c4)G2 + (3/2+ 1

2o1c2 + 5
16o2c4)G4 = 1

16o4c4. (48)

These non-homogeneous, linear algebraic equations are solved in the Appendix for G0, G2

and G4 by using the well known Cramer’s rule.
Next, as in section 2.4, upon noting that the non-linear period in the time T
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domain is 2p, equation (44), with known coefficients Gn , is integrated from 0 to 2p in
T to obtain the non-linear period n. The result, in the dimensionless time tb, is

n=2p(G0)−1/2(a1/a2)1/2[1+ 3
16(H

2
2 +H 2

4)− 15
16H2H4

+ 105
1024(H

4
2 +4H 2

2H 2
4 +H 4

4)+ · · ·], (49)

where

H2 =G2/G0, H4 =G4/G0. (50)

Note that, when G2 and G4 are set to zero, H2 and H4 become zero, and equations (46)–(48)
yield

n=2p$1+
o1c2

2
+ 3

8o2c4%
1/2

[1+ 3
4o2c2 + 3

8o4c4]−1/2(a1/a2)1/2, (51)

which is the non-linear period that one obtains by solving equation (42) using the single
term HB method. Examples of the results obtained by using equations (49) and (50) for
various values of S, m and h are presented and discussed in the next section.

3.1.   

By using equations (40), (43), (A1), (A2) and (A3), the non-linear frequency parameter
n, for the inextensible beam in Figure 1, obtained by using the TT method, given in
equation (49), and that obtained by using the single mode HB method, given in equation
(51), were calculated for various values of the beam base stiffness S, mass ratio m and
position h of the attached mass M. These calculations were programmed on the VAX/VMS
version 5 digital computer. Examples of the results of these calculations are shown in
Figures 6–13, in which is displayed the variation of the non-linear period parameter n with
the beam tip displacement a= b/l= c/p for different modes and various selected values
of S, m and h. A typical example of the effect on non-linear inertia of the beam on the
variation of the non-linear period h of the first mode with amplitude a is shown in
Figure 6. In this figure, the period calculated using formulation II, which includes
non-linear inertia terms, and the TT method (see equation (49)), and that obtained using
formulation II and single term HB method (see equation (51)), are compared to that
obtained by using formulation I, which does not include non-linear inertia terms, and the
TT method (see equation (31)). This figure shows a fairly good agreement between the
three results and, as was pointed out before, indicates that the non-linear inertia has
small effect on the period of the fundamental mode of the inextensible beam in Figure 1.

Figure 6. The effects of the vibration amplitude on the non-linear period of the first mode for the case m=0·0,
S=107. ----, Formulation II, TT method, equation (49); r, formulation II, single mode HB, equation (51);
W, formulation I, TT method, equation (31).
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Figure 7. As Figure 6, but for the second mode. ----, Formulation II, TT method, equation (49); · · ·, single
mode HB, formulation II; equation (51); W, reference [30].

These results also establish confidence in the reliability of the TT results obtained from
equation (49).

An example of the results obtained for the second mode is shown in Figure 7, where
the TT (equation (49)), and the single mode HB (equation (51)) results of formulation II
are compared with those obtained in reference [30], which include non-linear inertia effects.
Note that the results obtained by using equations (49) and (51) are shown in this figure
for an amplitude ratio a up to 0·7, while those obtained from reference [30] are shown,
as in reference [30], for values of a up to 0·3. As can be seen from this figure, the present
formulation II results obtained by using equations (49) and (51) are in fairly good
qualitative—but not quantitative—agreement with those in reference [30]. That is, the
present formulation II, as well as that in reference [30], predict a softening behavior of

Figure 8. The effects of the vibration amplitude on the non-linear period of the third mode for the case m=0·5,
m=0·5, S=1000. ----, Formulation II, TT method, equation (49); · · ·, formulation II, single mode HB,
equation (51).
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Figure 9. As Figure 8, but for the fourth mode.

Figure 10. The effects of the base stiffness and amplitude of vibration on the period given by formulation II
TT method, equation (49), for the case m=1·0 and m=0·8. (a) First mode; (b) second mode; (c) third mode;
(d) fourth mode. · · · · · , S=0·5; – · – · , S=1; – ·· – ·· , S=10; ——, S=50; – – –, S=1000.
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Figure 11. The effects of the lumped mass and amplitude of vibration on the period given by formulation II
TT method, equation (49), for the case S=1000, m=0·7. (a)–(d) First–fourth modes. m values: · · · · , 5; – · – · ,
2; – ·· – ·· , 1; ——, 0·5; – – –, 0·1.

the non-linear period of the second mode of the present (i.e., m=0, S=a) inextensible
beam. However, the results of equation (49), which are in fairly good agreement with those
of equation (51), show a significant quantitative difference with those in reference [30] as
the amplitude ratio a is increased.

Figures 8 and 9 are shown typical examples of the variation of the non-linear period
parameter n, with amplitude a, of the third and fourth modes, respectively, obtained by
using equations (49) and (51). It can be seen from these figures that for both the third and
fourth modes, the period–amplitude variation is of the softening type. These figures also
show that the TT results obtained by using equation (49) are in fairly good agreement with
the single term HB method results obtained by using equation (51). Note that the results
in Figures 7–9 indicate that the non-linear period n obtained by using equation (49) or (51)
becomes nearly independent of the amplitude ratio a as a is increased beyond a certain
value, which becomes smaller as the mode number is increased. This behavior of n with
a can be easily deduced from equation (49) and Table 2, by noting that o1, as well as p,
are, in general, larger than 1 for the second mode and increase relatively sharply as the
mode number is increased. Thus as the amplitude ratio c (a= c/p) is increased, the terms
o1c2/2 and 3

4o3c2 in the bracketed terms in equation (51) become greater than 1 at a relatively
small value of a, aQ 1, which decreases as the mode number is increased. As a result, the
period parameter n, according to equation (51), approaches a limiting value (2o1/3o3)1/2.
This behavior is also exhibited in these figures by the TT results obtained by using equation
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Figure 12. The effects of the lumped mass position and amplitude of vibration on the non-linear period given
by formulation II TT method; equation (48) for the case S=1000, m=0·1. (a)–(d) First–fourth modes. m values:
· · · · , 0·3; – · – · , 0·4; – ·· – ·· , 0·5; ——, 0·6; – – –, 0·8.

(49), but in this case the value of a at which the TT results show a near levelling of the
n− a curve appears to be larger, due to the correction produced by these results, than
that predicted by the single term HB results, given by equation (51). This behavior of
the n− a curves at a large amplitude ratio a, predicted by equations (49) and (51),
may not be accurate, as each of these two equations represents an approximate
solution, which becomes inaccurate at large motion amplitude, of the strongly non-linear
oscillator in equation (42). Therefore, in Figures 10–13 presented subsequently, only the
results of using the TT method (equation (49)), are displayed, and the n− a curve in
each case is shown up to an amplitude ratio a below which n increases monotonically
with a.

In Figure 10 is shown the effect of varying the beam base stiffness S on the period of
each of the first four modes of the beam in Figure 1. It can be seen from each of these
figures that as S decreases the period parameter n increases; i.e., the non-linear period n

shows a general behavior with S similar to the linear one [46, 50]. These figures also
indicate that, for small values of base stiffness S, small changes in S can lead to relatively
large changes in n, especially for the first mode, and for the higher modes at large
amplitudes where the relative effect of changing S becomes smaller as the mode number
is increased.

In Figure 11 is shown the effect of increasing the mass ratio m of the attached mass M
to the beam mass. In general, as in linear theory [46–48], increasing m leads to a decrease



0.35

0.4

0.1
0.00

P
er

io
d,

 ν

0.2

0.05 0.20 0.25 0.30

0.3

(c)

Amplitude, a
0.20

0.25

0.05
0.00

0.10

0.20

0.05 0.10 0.15

0.15

(d)

1.0

3.5

2.0
0.0 0.2

3.0

0.4 0.6 0.8

2.5

(a)

0.7

0.8

0.3
0.0

0.5

0.2

0.7

0.4 0.5 0.6

0.4

0.6

(b)

0.10 0.15

0.1 0.3

  -  733

Figure 13. As Figure 12, but for S=10, m=1·0 and the following m values: · · · · , 0·2; – · – · , 0·3; – ·· – ·· ,
0·4; ——, 0·6; – – –, 0·1.

in the period of motion, n. These results also indicate that small changes in the mass ratio
m can lead to relatively large changes in the period of each of the first four modes, especially
for the higher modes at large motion amplitudes. Note that in the present study the mode
shape used is assumed to be unaffected by the attached mass M, even when the amplitude
of motion is large. Therefore, one expects the present results accuracy to deteriorate for
relatively large values of m and a.

The effect of changing the relative position n of the attached mass M is shown in
Figure 12. It can be seen from these figures that, in general, for large amplitude ratio a,
moving the attached mass towards the clamped end of the beam tends to increase the
period of the first mode and decrease that of the second, or higher, mode. However, as
in linear theory [46–48], when the amplitude of motion is small, the period of the second,
or higher, mode goes through regions of increasing and decreasing values as the attached
mass is moved towards the clamped end of the beam. This behavior is more obvious in
Figure 13, where the beam is assumed to have a smaller base stiffness S than that
considered in Figure 12. Note that the above behavior is not obvious in Figure 12 due
to the small value of m and the large value of S used for the beam presented in these figures.
In Figure 13 it is also indicated that, depending on the value of base stiffness S and mass
ratio m of the attached mass M, changing the positions of the attached mass can lead to
relatively large changes in the period of free motion, especially when the amplitude of
motion is large.
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4. CONCLUSIONS

The objective of the present work is to provide a simple formulation, by using well
established analytical techniques, of the problem of large amplitude, planar, flexural free
vibrations of an inextensible beam carrying a small lumped mass element and attached to
a flexible root, and to study the effects of base stiffness and attached mass magnitude and
position on the non-linear period of motion of such a beam element. When the assumed
mode(s) method is used in conjunction with Lagrange’s method in the analysis of non-
linear one-dimensional continuous systems, then one can avoid the derivation of the field
integro-partial differential equation of motion and the associated boundary conditions. It
is shown that inertia non-linearities arise in this case as a result of using the inextensibility
of the beam. The present analysis is based on the assumption that the frequencies of beam,
which are amplitude dependent, remain widely spaced, as do the linear ones, even when
the amplitude of motion is relatively large. It is also assumed that the beam deflection
during the motion resembles a linear mode shape of the base beam which is unaffected
by the attached mass, and remains self-similar during the motion, even when the amplitude
of motion is large. Although these assumptions simplify the calculations considerably, they
may introduce significant errors at large amplitudes, especially when the ratio of the
attached mass to the beam mass is not small. For example, one can see from Figures 10–13
that, even at relatively moderate values of motion amplitude, the period of the third mode
may become equal to or greater than that of the second mode; similarly, the period of the
fourth mode may also become equal to or greater than that of the third mode at relatively
moderate values of motion amplitude. At such, and higher, amplitude values one may
expect the beam vibration to occur at more than one mode simultaneously. The present
results also show that the base stiffness, and the magnitude and position of the attached
mass have similar effects on the period of the non-linear system as in linear theory when
the amplitude of motion is small; but their effects are more pronounced than in linear
theory when the amplitude of motion is relatively large.
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APPENDIX

The Gn coefficients in equation (43) are as follows:

G0 =
R1(b2c3 − b3c2)− a2(R2c3 − b3R3)+ a3(R2c2 − b2R3)

D
, (A1)

G2 =
a1(R2c3 − b3R3)−R1(b1c3 − c1b3)+ a3(b1R3 − c1R2)

D
, (A2)

G4 =
a1(b2R3 −R2c2)− a2(b1R3 −R2c1)+R1(b1c2 − b2c1)

D
, (A3)

where

D= a1(b2c3 − b3c2)− a2(b1c3 − c1b3)+ a3(b1c2 − b2c1) (A4)

and

a1 =1+ 1
2o1c2 + 3

8o2c4, a2 = 1
4(o1c2 + o2c4), a3 = 1

16o2c4, (A5–A7)

b1 = 1
2o1c2 + 7

16o2c4, b2 =1+ 3
8o1c2 + 5

16o2c4, b2 =−1
2 +

1
16o2c4, (A8–A10)

c1 = 3
16o2c4, c2 = 3

8o1c2 + 5
16o2c4, c3 = 3

2 +
1
2o1c2 + 5

16o2c4, (A11–A13)

R1 =1+ 3
4o3c2 + 5

8o4c4, R2 = 1
4o3c2 + 5

16o4c4, R3 = 1
16o4c4. (A14–A16)


